

SLAG TRANSPORT SYSTEM

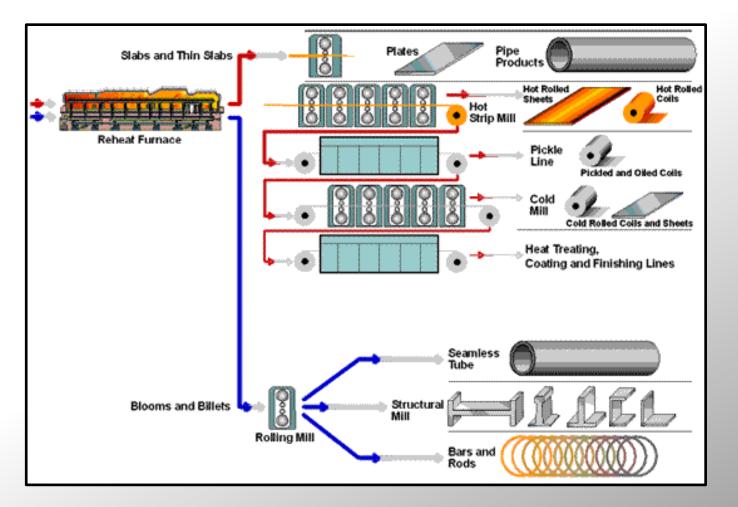
WHAT WE DO

- Heavy load material handling solution providers
- Designers and manufacturers of load transporters, load carrying pallets and Slag Transport Systems
- Manufacturers of High Capacity Lift Trucks and Coil Handlers

THE EAF FOAMED SLAG CHALLENGE

MINI MILL SLAG HANDLING CHALLENGES

- Increased EAF foamed slag handling volumes from larger furnaces and increased oxygen and carbon injection
- Reduce energy consumption costs
- Reduced heat cycle times to increase tonnage output

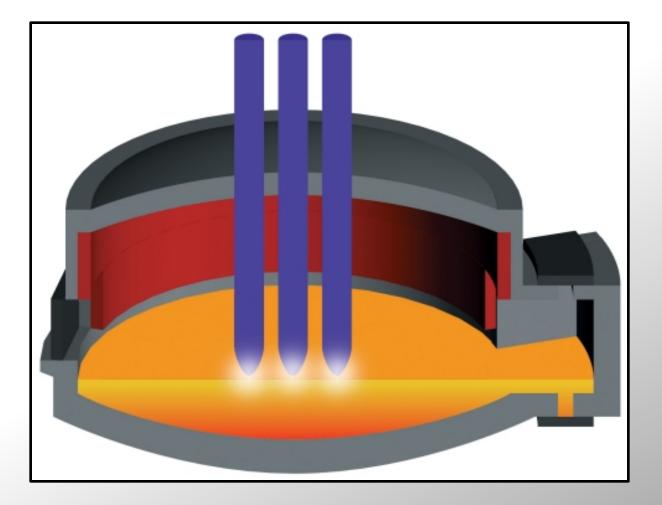

MINI MILL SLAG HANDLING CHALLENGES CONT.

- Processing slag, recovering steel
- Safety
- Reducing operational costs to improve profitability

OTHER MINI MILL MATERIAL HANDLING OPERATIONAL CHALLENGES

- Scrap handling
- Downstream product handling and transporting
- Process support material handling IE mill scale, sludge, rolls, mill scrap etc.
- Increased outsourcing of handling

THIRD PARTY MILL SERVICE CHALLENGES



- Safety
- Maintaining customer liquid steel
- Increased EAF foamed slag handling volumes
- Reducing operational costs maximizing returns to shareholders
- Providing expanded services to client base including scrap and downstream finished product handling & transport
- Maintain and develop new competitive advantages in service offerings to existing and new customers

EAF SLAG FOAMING CHALLENGES

- Oxygen & Carbon injection reduces electrical energy consumption, causes increased volumes of foamed slag and protects the furnace lining
- Reduces tap to tap times increasing production

EAF SLAG FOAMING CHALLENGES CONT.

- Typical operation requires 2 to 3 slag tap off cycles per heat IE 3 slag pot trips to and from disposal sites, usually causing furnace delays due to volume limitations of pots
- Fluctuations in foamed slag volumes can exceed the capacity of slag pots causing dangerous over flow and furnace cycle delays

TYPICAL SLAG POT & CONVENTIONAL CARRIER

- Cast Iron / Steel Construction
- Volume capacity approx. 25 m³

Industry standard for decades

EAF SLAG FOAMING OPERATIONAL SOLUTION

- Requires increased capacity slag container and transporting equipment to enable un-interrupted continuous de-slagging with a single slag container removed once - at the end of the heat
- Impact reduce tap to tap times by 33%
- Paling Transporter was challenged by a Middle East
 Steel maker to develop a solution that is when <u>STS</u> was born

SLAG TRANSPORT SYSTEM - <u>'STS'</u>

EVOLUTION TO SLAG HANDLING

CAPACITY & CARRIER REQUIREMENTS

- 260% increased slag container volume IE 65 m3 verses 25 m3 standard pots
- Transport carrier must be min.
 150 tons to 175 tons total payload capacity slag and STS container pallet

STS CONTAINER PALLET AT FURNACE

- Stable design
- For operator, simplified entry, lift and go
- Travel path of transporter protected by container and pallet

STS CONTAINER PALLET

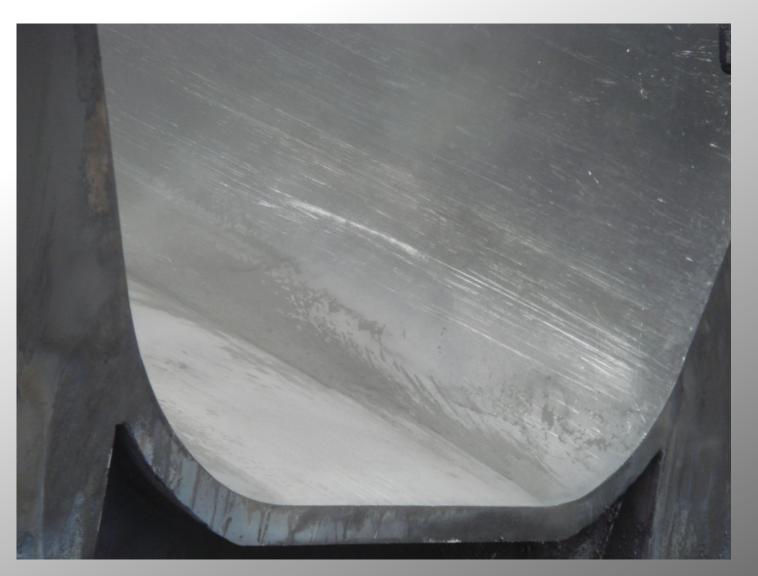
- High heat resistant steel versus cast iron construction
- Refractory lining not required
- High slag volume capacity 70+ m3
- Similar dry granular slag base applied prior to filling

STS CONTAINER KEY DESIGN FEATURES

- High heat resistant steel
- Strength and durability 5x that of a cast steel pot
- Formed & fabricated
- Greater contact area increases heat dissipation

STS SLAG CONTAINER DOOR

 Self opening discharge gate with mechanical linkage controlled by container tilt elevation



INSIDE THE SEASONED STS CONTAINER

ADDITIONAL STS CONTAINER OPERATIONAL BENEFITS

- Safer container design
- More durable container

SLAG DUMP SITE VIEWS

STS - SLAG TRANSPORT SYSTEM

DEDICATED SINGLE FUNCTION SLAG POT HANDLER

ADDITIONAL STS CONTAINER OPERATIONAL BENEFITS - ELIMINATION OF SKULLS

- Elimination of skulls removal and labour- intensive processing
- Improved steel recovery in slag processing

TRANSPORTER OPERATION

LIFT & DRIVE

ENTER PALLET

STS CONTAINER TRANSPORTER

Tight turning radius, and high maneuverability required inside most mills

OPERATOR SAFETY

- Double shielded operator cab
- High container sides
- Transporter can be quickly and safely extracted from under the pallet if required in an emergency

STS IN OPERATION

ENVIRONMENTAL IMPLICATIONS

RADICAL CHANGE IN TECHNOLOGY

SUMMARY: KEY COST SAVINGS AND ROI CONSIDERATIONS

- Increased steelmaking tonnage
- Fewer slag containers in system lower capital investment
- 1 trip versus 2/3 trips per heat to slag dump site
- Elimination of stuck skulls and skull processing
- Elimination single purpose high investment carriers
- Enables business case for introduction of downstream product handling CTS System for further operational cost savings
- Enhanced safety

OTHER USES FOR STS

CONTINUOUS TRANSPORT SYTEM - CTS

- Standardized pallets adapted to specific handling challenges
- Staging of empty and loaded pallets frees transporters to do multiple tasks
- Increased efficiency and utilization of handling equipment
- Lower total material handling capital investment and operating costs
- - "Dumping Capable" pallets
 - Transporter the base vehicle for STS functionally similar to scrap dumping pallet

CTS PALLETS

- Welded steel construction
- Versatile flat deck equipped with fixtures to handle virtually any extreme weight / handling characteristic challenge
- Standard pallet weight: 20 25 tons
- "Dumper Capable"

STEEL COIL YARD OPERATIONS

FINISHED PRODUCT

SCRAP HANDLING

CHARGE BUCKETS

OTHER PLANT HEAVY ITEM TRANSPORT

- Mill rolls spent & finished
- Sludge, mill scrap etc.

STS/ CTS TOTAL INTEGRATED TRANSPORTING AND HANDLING SYSTEM

THE CASE FOR STS & CTS

- Increased production tonnage
- Improved delivery performance to plant users & customers
- Lower material handling equipment investment
- Increased productivity
- Lower operational costs
- Reduced road damage & repair costs
- Embrace current world class technology

INNOVATION IN LIFTING PROFITS

PATENT REGISTRATIONS

CANADA • CA2641529

USA

US7993573B2

WORLD • WO2007_087726